Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Kathy first draft for TR1 #357

Draft
wants to merge 7 commits into
base: main
Choose a base branch
from
Draft
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
302 changes: 302 additions & 0 deletions source/precalculus/source/06-TR/01.ptx
Original file line number Diff line number Diff line change
Expand Up @@ -12,6 +12,308 @@
<subsection>
<title>Activities</title>

<definition xml:id="angle"> An <term>angle</term> is formed by joining two rays at their starting points. The point where they are joined is called the <term> vertex</term> of the angle. The measure of an angle is the amount of a circle between the two rays. </definition>

<activity>
<introduction>
<p>
We know that if you complete a full turn of the circle the angle created will be 360 degrees. Use this to estimate the measure of the given angles.

</p>
</introduction>
<task>
<statement>
<p> <figure xml:id="fig-90-degree-angle"><image width="50%">
<sageplot>
p=arrow((0,0),(3,3),aspect_ratio=1)
p+=arrow((0,0),(-3,3))
p+=arc((0,0),0.5,sector=(pi/4, 3*pi/4),color="black")
p.axes(False)
p
</sageplot>
</image></figure>
<ol marker="A." cols="2">
<li><p><m>45^{\circ}</m> </p></li>
<li><p> <m>90^{\circ}</m> </p></li>
<li><p> <m>135^{\circ}</m> </p></li>
<li><p> <m>180^{\circ}</m></p></li>
</ol> </p>
</statement>
<answer>
<p>
B
</p>
</answer>
</task>
<task>
<statement>
<figure><image width="50%">
<sageplot>
p=arrow((0,0),(-4,1),aspect_ratio=1)
p+=arrow((0,0),(4,-1))
p+=point((0,0),size=50)
p+=arc((0,0),0.5,sector=(atan(-1/4), atan(-1/4)+pi),color="black")
p.axes(False)
p
</sageplot>
</image></figure>
<p>
<ol marker="A." cols="2">
<li><p><m>45^{\circ}</m> </p></li>
<li><p> <m>90^{\circ}</m> </p></li>
<li><p> <m>135^{\circ}</m> </p></li>
<li><p> <m>180^{\circ}</m></p></li>
</ol> </p>
</statement>
<answer>
<p>
D
</p>
</answer>
</task>
<task>
<statement>
<p> <figure xml:id="fig-135-degree-angle"><image width="50%">
<sageplot>
p=arrow((0,0),(0,4),aspect_ratio=1)
p+=arrow((0,0),(-3,-3))
p+=arc((0,0),0.5,sector=(pi/2, 5*pi/4),color="black")
p.axes(False)
p
</sageplot>
</image></figure>
<ol marker="A." cols="2">
<li><p><m>45^{\circ}</m> </p></li>
<li><p> <m>90^{\circ}</m> </p></li>
<li><p> <m>135^{\circ}</m> </p></li>
<li><p> <m>180^{\circ}</m></p></li>
</ol> </p>
</statement>
<answer>
<p>
C
</p>
</answer>
</task>
</activity>
<definition>
<statement>
<p>
An angle is in <term>standard position</term> if its vertex is located at the origin and its initial side extends along the positive <m>x</m>-axis.
</p>
</statement>
<figure xml:id="standard-position"><image width="50%">
<sageplot>
p=arrow((0,0),(4,0),aspect_ratio=1)
p+=arrow((0,0),(-3,-3))
p+=arc((0,0),0.5,sector=(0, 5*pi/4),color="black")
p
</sageplot>
</image></figure>
Comment on lines +105 to +112
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

@StevenClontz We want to have the axes show up on this one, but no tickmarks or tickmark labels. Do you know how to do that?

Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I think I figured it out. The key is to past a list of two empty lists (ticks=[[],[]]), rather than ticks=None like I was trying.

Suggested change
<figure xml:id="standard-position"><image width="50%">
<sageplot>
p=arrow((0,0),(4,0),aspect_ratio=1)
p+=arrow((0,0),(-3,-3))
p+=arc((0,0),0.5,sector=(0, 5*pi/4),color="black")
p
</sageplot>
</image></figure>
<figure xml:id="standard-position"><image width="50%">
<sageplot>
p=arrow((0,0),(4,0),aspect_ratio=1,ticks=[[],[]])
p+=arrow((0,0),(-3,-3))
p+=arc((0,0),0.5,sector=(0, 5*pi/4),color="black")
p
</sageplot>
</image></figure>

<statement>
<p>
An angle measured counterclockwise from the initial side has a positive measure, while an angle measured clockwise from the initial side has a negative measure.
</p>
</statement>
<figure xml:id="standard-position-neg"><image width="50%">
<sageplot>
p=arrow((0,0),(4,0),aspect_ratio=1)
p+=arrow((0,0),(-3,-3))
p+=arc((0,0),0.5,sector=(5*pi/4,2*pi),color="black")
p
</sageplot>
Comment on lines +119 to +124
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

@StevenClontz Same for this one

Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Suggested change
<sageplot>
p=arrow((0,0),(4,0),aspect_ratio=1)
p+=arrow((0,0),(-3,-3))
p+=arc((0,0),0.5,sector=(5*pi/4,2*pi),color="black")
p
</sageplot>
<sageplot>
p=arrow((0,0),(4,0),aspect_ratio=1,ticks=[[],[]])
p+=arrow((0,0),(-3,-3))
p+=arc((0,0),0.5,sector=(5*pi/4,2*pi),color="black")
p
</sageplot>

</image></figure>

</definition>

<activity>
<introduction>
<p>
Find the measure of the angles drawn in standard position.
</p>
</introduction>
<task>
<statement>
<p> <figure xml:id="fig-45-degree-angle"><image width="50%">
<sageplot>
p=arrow((0,0),(4,0), aspect_ratio=1)
p+=arrow((0,0),(3,3))
p+=arc((0,0),0.5,sector=(0,pi/4),color="black")
p.axes(False)
p
</sageplot>
</image></figure>
<ol marker="A." cols="2">
<li><p><m>45^{\circ}</m> </p></li>
<li><p> <m>90^{\circ}</m> </p></li>
<li><p> <m>135^{\circ}</m> </p></li>
<li><p> <m>180^{\circ}</m></p></li>
</ol> </p>
</statement>
<answer>
<p>
A
</p>
</answer>
</task>
<task>
<statement>
<p> <figure xml:id="fig-180-degree-angle"><image width="50%">
<sageplot>
p=arrow((0,0),(4,0),aspect_ratio=1)
p+=arrow((0,0),(-4,0))
p+=arc((0,0),0.5,sector=(pi,2*pi),color="black")
p.axes(False)
p
</sageplot>
</image></figure>
<ol marker="A." cols="2">
<li><p><m>180^{\circ}</m> </p></li>
<li><p> <m>90^{\circ}</m> </p></li>
<li><p> <m>-180^{\circ}</m> </p></li>
<li><p> <m>-90^{\circ}</m></p></li>
</ol> </p>
</statement>
<answer>
<p>

C
</p>
</answer>
</task>
<task>
<statement>
<p> <figure xml:id="fig-210-degree-angle"><image width="50%">
<sageplot>
p=arrow((0,0),(4,0),aspect_ratio=1)
p+=arrow((0,0),(4*cos(7*pi/6),3*sin(7*pi/6)))
p+=arc((0,0),0.5,sector=(0,7*pi/6),color="black")
p.axes(False)
p
</sageplot>
</image></figure>
<ol marker="A." cols="2">
<li><p><m>30^{\circ}</m> </p></li>
<li><p> <m>-150^{\circ}</m> </p></li>
<li><p> <m>-210^{\circ}</m> </p></li>
<li><p> <m>210^{\circ}</m></p></li>
</ol> </p>
</statement>
<answer>
<p>
D
</p>
</answer>
</task>
<task>
<statement>
<p> Draw an angle of measure <m>-225^{\circ} </m> in standard position.
</p></statement>
<answer>
<figure xml:id="fig-225-degree-angle"><image width="50%">
<sageplot>
p=arrow((0,0),(4,0),aspect_ratio=1)
p+=arrow((0,0),(4*cos(3*pi/4),4*sin(3*pi/4)))
p+=arc((0,0),0.5,sector=(3*pi/4,2*pi),color="black")
p.axes(False)
p
</sageplot>
</image></figure>
</answer>
</task>
</activity>

<remark>
Activity or remark - Something about the circumference of a circle being another way to measure the angle. <m>C=2\pi r</m> divide both sides by the radius, so a full circle or <m>360^{\circ}=2\pi</m> radians
</remark>

<definition xml:id="def-radian">
<statement>
<p>
One <term>radian</term> is the measure of a central angle of a circle that intersects an arc the same length as the radius.
</p>
</statement>
</definition>

<activity>
<introduction>
<p>
Using the fact that one turn around the circle is <m>360^{\circ}</m> and also <m>2\pi</m> radians. Find the measure of the following angles in radians.
</p>
</introduction>
<task>
<statement>
<p> <m>180^{\circ}</m>
<ol marker="A." cols="2">
<li><p> <m>\frac{\pi}{4}</m> </p></li>
<li><p> <m>\pi</m> </p></li>
<li><p> <m>\frac{3\pi}{4}</m> </p></li>
<li><p> <m>\frac{\pi}{2}</m> </p></li>
</ol> </p>
</statement>
<answer>
<p>
B
</p>
</answer>
</task>
<task>
<statement>
<p> <m>45^{\circ}</m>
<ol marker="A." cols="2">
<li><p> <m>\frac{\pi}{4}</m> </p></li>
<li><p> <m>\pi</m> </p></li>
<li><p> <m>\frac{3\pi}{4}</m> </p></li>
<li><p> <m>\frac{\pi}{2}</m> </p></li>
</ol> </p>
</statement>
<answer>
<p>
A
</p>
</answer>
</task>
</activity>

<activity>
<introduction>
<p>
Using the fact that one turn around the circle is <m>360^{\circ}</m> and also <m>2\pi</m> radians. Find the measure of the following angles in degrees.
</p>
</introduction>
<task>
<statement>
<p> <m>\frac{\pi}{2}</m>
<ol marker="A." cols="2">
<li><p> <m>45^{\circ}</m> </p></li>
<li><p> <m>90^{\circ}</m> </p></li>
<li><p> <m>180^{\circ}</m> </p></li>
<li><p> <m>360^{\circ}</m> </p></li>
</ol> </p>
</statement>
<answer>
<p>
B
</p>
</answer>
</task>
<task>
<statement>
<p> <m>\frac{3\pi}{4}</m>
<ol marker="A." cols="2">
<li><p> <m>45^{\circ}</m> </p></li>
<li><p> <m>90^{\circ}</m> </p></li>
<li><p> <m>135^{\circ}</m> </p></li>
<li><p> <m>180^{\circ}</m> </p></li>
</ol> </p>
</statement>
<answer>
<p>
C
</p>
</answer>
</task>
</activity>
</subsection>

<exercises>
Expand Down
Loading