Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Fix for #905 #906

Merged
merged 3 commits into from
Nov 16, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
14 changes: 6 additions & 8 deletions hls4ml/backends/fpga/passes/clone.py
Original file line number Diff line number Diff line change
Expand Up @@ -20,21 +20,19 @@ def initialize(self):
class CloneFunctionTemplate(FunctionCallTemplate):
def __init__(self):
super().__init__(Clone, include_header=clone_include_list)
self.template = None # to be filled once number of clones known

def format(self, node):
params = self._default_function_params(node)
for i, _output in enumerate(node.outputs):
params['output' + str(i + 1)] = node.variables[node.outputs[i]].name

if self.template is None:
self.template = (
'nnet::clone_stream<{input_t}, {output_t}, {size}>({input}, '
+ ', '.join(['{output' + str(i + 1) + '}' for i in range(len(node.outputs))])
+ ');'
)
template = (
'nnet::clone_stream<{input_t}, {output_t}, {size}>({input}, '
+ ', '.join(['{output' + str(i + 1) + '}' for i in range(len(node.outputs))])
+ ');'
)

return self.template.format(**params)
return template.format(**params)


def register_clone(backend):
Expand Down
59 changes: 59 additions & 0 deletions test/pytest/test_stream_multi_clone.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,59 @@
import os
import random
from pathlib import Path

import numpy as np
import pytest
import tensorflow as tf
from keras.layers import Add, Dense
from tensorflow import keras

from hls4ml.converters import convert_from_keras_model

test_root_path = Path(__file__).parent


@pytest.fixture(scope='module')
def model():
seed = 42
os.environ['RANDOM_SEED'] = f'{seed}'
np.random.seed(seed)
tf.random.set_seed(seed)
tf.get_logger().setLevel('ERROR')
random.seed(seed)

inp = keras.Input(shape=(10,))
x = Dense(10)(inp)
y = Dense(10)(inp)
z = Dense(10)(inp)
xy = Add()([x, y]) # 5
xy = Add()([xy, y]) # 5
out = Add()([xy, z]) # 5
model = keras.Model(inp, out)
return model


@pytest.fixture(scope='module')
def data():
rng = np.random.RandomState(42)
X = rng.normal(0, 1, (1000, 10))
X = np.clip(X, -16, 15)
return X


@pytest.mark.parametrize('backend', ['Vivado', 'Quartus', 'Vitis'])
def test_multi_clone(model, data, backend: str):
output_dir = str(test_root_path / f'hls4mlprj_stream_multi_clone_{backend}')
hls_config = {'Model': {'Precision': 'fixed<32,5>', 'ReuseFactor': 1}}
model_hls = convert_from_keras_model(
model,
backend=backend,
output_dir=output_dir,
hls_config=hls_config,
io_type='io_stream', # clone only happens with stream io.
)
model_hls.compile()
r_hls = model_hls.predict(data)
r_keras = model(data).numpy()

assert np.allclose(r_hls, r_keras, atol=1e-5, rtol=0)
Loading